Volume Revision Worksheet L3/4

1) Orange juice is poured from a carton into some glasses.
The carton is a cuboid, 15 cm long, 10 cm wide and 20 cm high.
125 cubic cm of juice is poured into each glass.
How many glasses can be poured from the full carton?

2)b) A number of the above stock cubes are packed into a cuboid box.
The box is 6 cm long, 3 cm broad and 9 cm high. How many stock cubes are needed to fill the box?

2) This empty tank is to be filled with water.

The tank is a cuboid, 90 cm long, 60 cm wide and 50 cm high.
The water fills at a rate of 15 litres every minute. (1 litre $=1000 \mathrm{~cm}^{3}$)
How long will it take to fill the tank?
4) Bob is building a patio with a concrete base.

The base of the patio is 7 m long, 3 m wide and 10 cm deep.

Concrete costs $£ 60$ per cubic metre.
Find the total cost of the concrete for the base of Bob's patio.
5) The local council is installing a new children's playpark using a rubberised material.

The area of the rectangular playpark is $225 \mathrm{~m}^{2}$.
The new playpark must have a depth of 12 cm .
The council has ordered 30 cubic metres of the rubberised material for the playpark.
Will this be enough?
6)a) A wheelie bin is in the shape of a cuboid.

The dimensions of the bin are:

$$
\begin{aligned}
& \text { length }=70 \mathrm{~cm} \\
& \text { breadth }=60 \mathrm{~cm} \\
& \text { height }=95 \mathrm{~cm}
\end{aligned}
$$

Calculate the volume of the bin.

6)b) The council is considering a new design of wheelie bin.

The new bin will have the same volume as the old one.
The base of the new bin is to be a square of side 55 cm .
Calculate the height of the new wheelie bin.
7) Shown below is a container in the shape of a cuboid.

When full, the container holds 1600 cubic centimetres of water.
Work out the height of the container
8) A cuboid has a square base.

Its height is 25 cm and its volume is $1369 \mathrm{~cm}^{3}$. Calculate the length of its base.

9)b) This cuboid has the same volume as the shape shown above.
Find the height of the cuboid.

10)a) The end face of a grain hopper is shown in the diagram.
Calculate the area of the end face.

Find the volume of the hopper.

Calculate the volume of plastic used to make the speed bump.

1) $\quad V=l b h$
$V=15 \times 10 \times 20$
$\mathrm{V}=3000 \mathrm{~cm}^{3}$
$3000 \div 125=24$ glasses
2) $\quad \mathrm{V}=\mathrm{lbh}$
$\mathrm{V}=90 \times 60 \times 50$
$V=270000 \mathrm{~cm}^{3}$
$V=270$ litres
$270 \div 15=18$ minutes
3) $\quad V=A h$
$V=225 \times 0.12$
$\mathrm{V}=27 \mathrm{~m}^{3}$

30 m 3 will be enough for the playpark

7) $\quad V=I b h$

$1600=20 \times 10 \times h$
$1600=200 \times h$
$h=1600 \div 200$
$\mathrm{h}=8 \mathrm{~cm}$
9)a) $A=1 / 2 b h$
$A=1 / 2 \times 8 \times 6$
A $=24 \mathrm{~cm}^{2}$
$V=$ area \times length
$V=24 \times 15$
$V=360 \mathrm{~cm}^{3}$
9)b) $\quad V=1 b h$
$360=4 \times 10 \times h$
$360=40 \times h$
$\mathrm{h}=360 \div 40$
$\mathrm{h}=9 \mathrm{~cm}$
2)a) $\quad V=I b h$
$V=1.5 \times 1.5 \times 1.5$
$\mathrm{V}=3.375 \mathrm{~cm}^{3}$
2)b) $6 \div 1 \cdot 5=4$
$3 \div 1 \cdot 5=2$
$9 \div 1 \cdot 5=6$
$4 \times 2 \times 6=48$ cubes fill the box
4) $\quad V=1 b h$
$\mathrm{V}=3 \times 7 \times 0.1$
$\mathrm{V}=2 \cdot 1 \mathrm{~m}^{3}$
$2 \cdot 1 \times 60=£ 126$
6)a) $\quad V=1 b h$
$V=70 \times 60 \times 95$
$\mathrm{V}=399000 \mathrm{~cm}^{3}$
6)b) $\quad V=1 b h$
$399000=55 \times 55 \times h$
$399000=3025 \times h$
$h=399000 \div 3025$
$\mathrm{h}=131.9 \mathrm{~cm}$
8) $\quad V=I b h$
$1369=\mid \times 1 \times 25$

$\mathrm{I}=\sqrt{ } 54.76$
$\mathrm{I}=7 \cdot 4 \mathrm{~cm}$
10)a) $A=1 b \quad A=1 / 2 \mathrm{bh}$
$A=3 \times 4 \quad A=1 / 2 \times 3 \times 2$
Total Area
$A=12 \mathrm{~m}^{2}$
A $=3 \mathrm{~m}^{2}$
$=12+3$
$=15 \mathrm{~m}^{2}$
10)b) $V=A h$
$V=15 \times 3.5$
$\mathrm{V}=52.5 \mathrm{~m}^{3}$
11) $\mathrm{A}=1 / 2 \pi \mathrm{r}^{2}$

$$
A=1 / 2 \times \pi \times 0 \cdot 1^{2}
$$

$$
A=0.0157 \mathrm{~m}^{2}
$$

$\mathrm{V}=\mathrm{Ah}$
$V=0.0157 \times 7$
$\mathrm{V}=0.11 \mathrm{~m}^{3}$

